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1. Introduction

One of the first families of physical, supersymmetric holographic flows to be studied were

those [1, 2] describing the massive, N = 1 supersymmetric flows from N = 2 quiver gauge

theories. These flows were shown to go to Leigh-Strassler type fixed point theories in

the infra-red, and the holographic duals of these fixed points were also identified. It has

remained one of the unsolved problems in holography to construct these solutions explicitly,

and while this is hard for the general quiver theories, one might expect to be able to solve
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this problem for the Â1 quiver of [1] because of its much higher level of symmetry. Despite

numerous attempts, there has been rather little progress in finding the flow solution within

supergravity.

Shortly after the work of [1, 2], new supergravity fixed points were discovered in [3],

and the corresponding flow solutions were obtained in [4]. While these flows were originally

investigated for N = 4 Yang-Mills theory, it was noted at the time that these solutions

were also flows in the untwisted sector of the N = 2 superconformal quiver gauge theories

obtained via orbifolds. These supergravity solutions were originally constructed in five

dimensions, but their complete ten-dimensional analogs were subsequently constructed in

[5], [6], and then significantly generalized in a recent paper [7]. While these supergravity

solutions were explicitly known, the problem was that their underlying geometric structure

was far from evident: The solutions were obtained via the magic of consistent truncation,

and not through a clearer geometric principle. The complication is that these solutions

involve multiple, non-trivial fluxes and are not some straightforward decoration of a Calabi-

Yau geometry.

Finally, in [8] it was argued that the holographic flow solutions of [1, 2] and [3, 4]

should be related via a continuous family of duality transformations. Further evidence for

this was found in the field theory analysis of [9].

Our purpose in this paper is to re-examine and understand the geometry of both of

these families of flows using, in particular, the ideas of [10, 11, 7, 12] for classifying the

“supersymmetry bundles.” For the Klebanov-Witten flow we will argue that the internal

geometry of the entire flow solution must live on the singular conifold. That is, the internal

manifold must be governed by a Ricci-flat, Kähler metric on the conifold, and that this

metric must interpolate between the orbifold, C2/Z2×C at infinity and the cone over T (1,1)

in the interior. The orbifold singularity at infinity is thus blown up as one moves radially

inwards. We then proceed to characterize this geometry exactly in terms of a “master

equation” that is a single, second-order, quasi-linear PDE in two variables. This charac-

terization of the solution represents a significant simplification over the more traditional

Monge-Ampère equation (which is strongly non-linear, and sixth-order).

For the Pilch-Warner (PW) flow we re-examine the geometry underlying the general

class of solutions in [7]. We will show that the internal manifold has an integrable complex

structure and a holomorphic (3, 0)-from such that Ω∧Ω is the volume form of the manifold.

The internal geometry is thus almost Calabi-Yau, except that it is not Kähler: The Kähler

form is not closed. It was also shown in [7] that this non-trivial flux geometry was governed

by a single, second-order, quasi-linear PDE, or “master equation.” Indeed, this master

equation is very simply related to the one that we find here for the Calabi-Yau geometry

of the Klebanov-Witten flow.

This observation now provides new insight into the broader class of results contained

in [10, 11, 7, 12]. These were all supersymmetric, multiple flux solutions, and were all

governed by a single master equation similar to those encountered here. Our work here

suggests that all these multiple flux solutions are indeed some relatively simple deformation

of a Calabi-Yau condition [13].

In section 2 we will use a combination of field theory, supergravity and brane-probe
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analysis to argue that the complete Klebanov-Witten flow should be described by a Calabi-

Yau metric on the singular conifold. In section 3 we look at the conifold geometry in some

detail, and use the symmetries of the flow that we seek to pin down the general form of the

metric on the internal space. Having obtained a suitably general metric Ansatz, in section

4 we use the techniques of [10, 11, 7, 12] to solve the Killing spinor equations, and thereby

obtain the Calabi-Yau metric in terms of the solution of the master equation. In section 5

we repeat the analysis, but this time more systematically in terms of the special holonomy

of the spin connection. The end-result is the same as that of section 4, but one sees very

explicitly how each equation emerges from distinct conditions on the holonomy. Section

5 also contains a more detailed discussion of the complex structure and coordinates, and

contrasts our approach with adaptions of the ideas of Tian and Yau, which would lead

to the Monge-Ampère equation. Section 6 contains our geometric re-examination of the

geometry of the PW flow, and section 7 contains some final remarks.

2. Field theory

The UV point of the Klebanov-Witten flow is the N = 2, Â1 quiver gauge theory. This

has gauge group SU(N) × SU(N) and also has two bi-fundamental hypermultiplets. In

terms of N = 1 multiplets, the two N = 2 vector multiplets contain two N = 1 adjoint

chiral superfields Φ1, Φ2 while each of the hypermulitplets yields a pair of chiral multiplets

(A1, B1) and (B2, A2). The chiral superfields A1, B2 lie in the (N, N̄ ) representation while

B1, A2 are in the (N̄ ,N). The superpotential is

W = Tr

[(
Φ1 0

0 Φ2

) [(
0 A1

A2 0

)
,

(
0 B2

B1 0

)]]

= Tr [Φ1(A1B1 −B2A2)] + Tr [Φ2(A2B2 −B1A1)] . (2.1)

This theory has a SU(2)×U(1) R-symmetry together with a global SU(2) symmetry

under which the two hypermultiplets form a doublet.

The Klebanov-Witten flow is driven by the relevant operator

∆W =
1

2
mTr [Φ2

1] − 1

2
mTr [Φ2

2] (2.2)

which breaks the N = 2 supersymmetry of the vector multiplet. The IR point of this flow

has only the bi-fundamental fields, the adjoint fields having been integrated out. It has a

superpotential

WN=1 = λTr (A1B1B2A2 −A1A2B2B1) . (2.3)

The methods of Leigh and Strassler [14] suggest that this is a non-trivial CFT [1].

This theory still has the SU(2) global symmetry but the SU(2) × U(1) R-symmetry

is broken to a U(1) R-symmetry. There are also two Z2 R-symmetries. One of them

is the symmetry exchanging the two gauge groups, while the other symmetry is charge

conjugation [1]. The obvious interchange symmetry is:

A1 ↔ A2 , B1 ↔ B2 , Φ1 ↔ Φ2 . (2.4)
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However, this is not a symmetry of the perturbation (2.2). To get a symmetry of the com-

plete perturbed superpotential we need to combine the interchange with an R-symmetry

transformation:

A1 → i A2 , A2 → i A1 , B1 → i B2 , B2 → i B1 , Φ1 ↔ Φ2 , (2.5)

under which W + ∆W → −(W + ∆W ), and hence the action is invariant. We will need

this particular symmetry later.

2.1 The brane-probe theory

A fundamental feature of D-brane physics is that since they are BPS objects, D-branes

are free to move in their tranverse directions without feeling a force from parallel branes.

This manifests itself as a moduli space in the gauge theory living on the branes. In this

section we use this Higgs moduli space along the Klebanov-Witten flow to obtain important

insights into the geometry of the holographic dual theory.

When a single brane moves off the stack and probes the internal geometry, the gauge

group is broken according to:

SU(N + 1)× SU(N + 1)→ SU(N)× U(1)× SU(N)× U(1) . (2.6)

Since N À 1, the SU(N) factors produce the background whereas the U(1) factors cor-

respond to the brane-probe theory, and their gravitational effects can be neglected. If

the probe brane is located far away from the rest of the branes, the W bosons are very

heavy and the U(1) part of the theory decouples. We now concentrate on the decoupled

U(1)×U(1) gauge theory. The diagonal U(1) factor is just a free U(1) and we will drop it.

The anti diagonal U(1) couples to four scalars A1, A2, B1 and B2. The fields A1 and

B2 have a U(1) charge +1, wheras A2 and B1 have charge −1. Since these matter fields

have large vevs, the remaining U(1) can be integrated out. This corresponds to a Kähler

quotient. Alternatively, the Kähler quotient is equivalent to solving D-flatness modulo this

U(1).

The resulting space of vacua is parameterized by the gauge invariant variables

z1 = A1B1 , z2 = B1B2 , z3 = A2A1 and z4 = B2A2 . (2.7)

These variables satisfy

z1z4 − z2z3 = 0, (2.8)

the defining equation of the singular conifold.

This result was deduced from the structure of the F -terms of the field theory, and one

should note that, provided that there are no non-perturbative corrections, this analysis

is valid not only valid for the IR fixed point, but for all points along the RG flow. As a

result, the moduli space of the brane probes for the complete flow should be described by

the conifold, and in particular it should inherit its complex structure. Since the D-terms of

the field theory action undergo strong renormalization, the metric of the field theory, and

of the brane probes will be non-trivial. We therefore infer that as far as the brane probes

are concerned, the flow will be described by some hermitian metric on the conifold.
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To get a better picture of what is happening in the UV, it is convenient to change

coordinates to:

w1 = z1 + z4 , w2 = i(z2 + z3) , w3 = z2 − z3 and w4 = i(z1 − z4) , (2.9)

which satisfy:

w2
1 + w2

2 + w2
3 + w2

4 = 0 . (2.10)

Solving the F-flatness condition in (2.1) and (2.2) for the Φi yields

mΦ1 = − (A1B1 −B2A2), mΦ2 = A2B2 −B1A1 (2.11)

and since the probe theory is Abelian, we can write this as

w4 = imΦ1 = imΦ2. (2.12)

Thus the moduli space has a preferred coordinate, w4, that is dual to the vev of the scalar

fields in N = 2 vector multiplet. Note that at the UV fixed point, when m = 0, one

has w4 = 0 and Φ1 + Φ2 is a freely choosable, independent field. This means that in the

UV the probe moduli space is simply the orbifold, C2/Z2 × C, and that the conifold has

degenerated. At the UV point, the scalar kinetic term and the brane probe metric have

the trivial Euclidean, flat form while in the IR the brane-probe moduli space lies on the

singular conifold with the Calabi-Yau metric obtained from the cone over T (1,1) [1]. This

naturally leads one to consider the family of manifolds

w2
1 + w2

2 + w2
3 + ε2 w2

4 = 0 . (2.13)

For an arbitrary, non-zero value of ε we can rescale w4 and reproduce (2.10), however

the Kähler metric on the moduli space will make it possible to determine the size of the

constant ε. Thus by varying ε between 0 and 1 we can interpolate between C2/Z2×C and

the singular conifold.

Whilst the previous calculation is not new or difficult, our interpretation of the result is

our guide to the construction of the dual geometry of the whole flow. Namely, it suggests

that the holographic dual of the entire flow has the complex structure of the conifold.

However the Kähler metric on this conifold has to be squeezed so as to ultimately degenerate

to the orbifold in the UV. To obtain the exact result we need to determine a squeezed Kähler

metric on the conifold that respects the symmetries of the flow. One might hope to get

this metric from the field theory, however quantum corrections mean that the metric on

the brane-probe moduli space doesn’t necessarily coincide with the metric obtained from

the Kähler quotient of the field theory metric obtained from the UV limit [15].

2.2 Supergravity

Having gained some insight from the field theory, we now turn more directly to the gravity

side of the duality. In addition to the dual geometry we must consider the possibility of

non-trivial profiles for the fluxes and the dilaton of IIB supergravity.
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The N = 2 quiver gauge theory can be realized in string theory by D3-branes probing

a C2/Z2 orbifold singularity [16]. The mass deformation (2.2) is then described by a

twisted-sector, closed string mode. The corresponding twisted-sector, closed string modes

of type IIB theory on an ALE orbifold come in six-dimensional N = (2, 0) tensor multiplets

associated to the blow-up of a two-cycle. Each such multiplet contains five scalars: Three of

these scalars are hyper-Kähler deformations while the remaining two scalars describe the NS

and RR two-form flux through the two-cycle. Putting D3-branes on the singularity breaks

supersymmetry to four-dimensional N = 2 supersymmetry. The two scalars describing the

two-form flux then couple at first order to the relative gauge couplings and theta angles of

the gauge theory. On the other hand the three scalars describing the hyper-Kähler blow-up

modes couple to the D-terms and F-terms [8]. This shows, that at leading order our mass

deformation corresponds to a geometric deformation (2.13) of the orbifold and that the

two-form potentials and three-form fluxes are not being turned on. Also, to leading order

the dilaton-axion is not running. We will therefore seek supergravity with no such fluxes,

and with a trivial dilaton and axion.

The brane-probe analysis also yields more evidence for this proposal. If the holographic

dual theory had non-zero three-form flux, then one would expect there to be a potential

for the brane-probe that would restrict it to a subspace of less than six dimensions [17].

Since we found a six-dimensional brane-probe moduli space, it seems natural that there

should be no three-form fluxes.

We can now use the fact that our D3-branes can probe the whole geometry. In order

for the probe brane to preserve supersymmetry, the Killing spinor, ε, in the holographic

dual theory has to satisfy [18, 19]:

Γ1234ε = ±i ε (2.14)

(for one uniform choice of sign, depending upon conventions) at the location of the probe

brane. Since the probe brane can be moved anywhere in the geometry, equation (2.14) has

to hold at all points. We can utilise results from [20] where it was established that such

solutions are of Becker-type.

This means that the internal manifold is Calabi-Yau, in agreement with our conclusions

from the previous section. In Becker type compactifications the warp factor in front of the

metric parallel to the branes is Z−
1
2 , where Z satisfies a harmonic equation, and the five-

form flux is related to the warp factor by:

f = − 1

4Z
, (2.15)

where the five-form flux is given by

F = (1 + ∗) df ∧ dx1 ∧ dx2 ∧ dx3 ∧ dx4 . (2.16)

There could be a holomorphic dilaton or imaginary self dual three-form fluxes, but we

already agued that they vanish.

– 6 –



J
H
E
P
0
9
(
2
0
0
6
)
0
6
3

The fact that the internal geometry is Calabi-Yau implies the that the Killing spinors

can be determined using three independent helicity projectors of the form:

Π(ab) =
1

2
(1l− iΓaΓb) , (2.17)

for some frame indices, a and b, on the Calabi-Yau manifold. These helicity projectors

have the effect of isolating the spinor that is a singlet under the SU(3) holonomy.

In summary, we are searching for a Calabi-Yau metric on the singular conifold with an

SU(2) × U(1) symmetry, and the discrete, Z2 R symmetries described in [1]. The metric

must agree with the more standard metric [21] for small values of the radial coordinate,

and it must reduce to a flat metric on C2/Z2×C in limit of some large appropriately chosen

radial coordinate.

3. The conifold, its complex structure and hermitian metrics

3.1 Describing the conifold

As explained in [21], it is very convenient to describe the conifold in terms of the matrix:

W ≡ 1√
2

(
w3 + iw4 w1 − iw2

w1 + iw2 −w3 + iw4

)
, (3.1)

The vanishing of the determinant of this matrix defines the conifold:

det(W) = − 1

2
(w2

1 + w2
2 + w2

3 + w2
4) = 0 , (3.2)

while the obvious norm defines a natural radial coordinate:

Tr(W†W) = |w1|2 + |w2|2 + |w3|2 + |w4|2 ≡ r2 . (3.3)

The surface of constant r is the T (1,1) space:

T (1,1) =
SU(2) × SU(2)

U(1)
, (3.4)

which can be given a Einstein metric [22]. Taking the cone over this leads to the well-

known Ricci-flat metric on the conifold [21], [1]. This metric has SU(2)L×SU(2)R×U(1)

invariance where the SU(2)’s act on the left and right of W, while the U(1) is an overall

phase rotation on the wj .

As described in the previous section, we seek a broader class of metrics on the conifold:

Metrics that preserve the complex structure and have an SU(2) × U(1) symmetry where

the U(1) is the phase rotation on the wj and the SU(2) is the diagonal subgroup of

SU(2)L×SU(2)R. Note that this particular SU(2) leaves w4 invariant, while transforming

(w1, w2, w3) as a triplet. Thus the continuous symmetry acts as SO(3)× U(1).

Also note that if one uses the identification of coordinates and fields in (2.7) and (2.9)

then the discrete symmetry, (2.5), of the field theory becomes the reflection:

w1 → −w1 , w2 → −w2 , w3 → −w3 , w4 → w4 . (3.5)

Thus we are actually looking for an O(3)× U(1) invariant metric.

– 7 –
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3.2 Breaking some symmetry and a degenerate limit

Consider the “trivial” deformation of the conifold:

w2
1 + w2

2 + w2
3 + ε2 w2

4 = 0 . (3.6)

As we discussed earlier, the parameter, ε, can be removed by rescaling w4. However, once

one has chosen a metric on the conifold, this scale parameter has meaning, and breaks the

symmetry to O(3)× U(1). Moreover, if one takes the degenerate limit ε = 0 this modifies

the complex structure and enhances the symmetry to SU(2)×U(1)×U(1). In particular,

the underlying complex manifold becomes the orbifold C2/Z2×C. The single factor of C is

simply parametrized by w4, while the C2 can be parametrized by two coordinates (ζ1, ζ2)

that are identified under ζj → −ζj. The invarants under this action are:

w1 =
1

2
(ζ2

1 + ζ2
2 ) , w2 =

i

2
(ζ2

1 − ζ2
2 ) , w3 = i ζ1 ζ2 , (3.7)

and these satisfy (3.6) with ε = 0. Note that under the residual SU(2) symmetry (ζ1, ζ2)

transforms as a doublet. The two U(1) symmetries are the now-independent phase rotations

of (ζ1, ζ2) and w4.

Note that in this degeneration limit we have recovered the underlying manifold and

symmetry structure of the Z2 orbifold of the solutions considered in [5, 6]. We will discuss

this further in section 6.

3.3 Some useful coordinates

We wish to parametrize the conifold in terms of the residual SU(2)× U(1) symmetry. To

this end, introduce:

W0 ≡
1√
2

√
µ2 − ν2 1l +

1√
2

( 0 µ+ νµ− ν 0 ) , (3.8)

where µ, ν and φ are real, with |µ| ≥ |ν|. A general matrix of the form (3.1) can then

be obtained by conjugating with a single matrix, L ∈ SU(2), and multiplying by a phase,

eiφ ∈ U(1) :

W = eiφ LW0 L† . (3.9)

One can see that this is possible by considering the real and imaginary parts of wj = xj+iyj,

and denoting the first three components by 3-vectors ~x and ~y. First use the overall phase to

set x4 = 0, and then the imaginary part of the conifold equation (3.2) means that ~x ·~y = 0.

One can now use all of the SO(3) symmetry to put these orthogonal vectors in the form

~x = (µ, 0, 0) and ~y = (0, ν, 0) for some µ, ν > 0. The real part of the conifold equation

implies µ2 = ν2 + y2
4, and hence µ ≥ ν. We thus obtain w1 = µ, w2 = iν, w3 = 0 and

w4 = i
√
µ2 − ν2, which is (3.8), provided that we let µ and ν be both positive or negative

with |µ| ≥ |ν|.
We parametrize the SU(2) matrices in terms of Euler angles. That is, we write

L = R12(ϕ2)R13(ϕ1)R12(ϕ3) , (3.10)

– 8 –
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where

R12(ϕ) ≡ ( e−
i
2
ϕ 00 e+ i

2
ϕ ) , R13(ϕ) ≡

(
cos(1

2 ϕ) − sin( 1
2 ϕ)

sin(1
2 ϕ) cos( 1

2 ϕ)

)
. (3.11)

It is convenient to introduce the invariant 1-forms, σj where:

L† dL =
1

2
( i σ3 σ1 − i σ2 − (σ1 + i σ2) −i σ3 ) . (3.12)

Explicitly, one has:

σ1 ≡ cosϕ3 dϕ1 + sinϕ3 sinϕ1 dϕ2 ,

σ2 ≡ sinϕ3 dϕ1 − cosϕ3 sinϕ1 dϕ2 ,

σ3 ≡ cosϕ1 dϕ2 + dϕ3 . (3.13)

For future reference we note that in these coordinates, the degenerate limit that takes

us from the conifold to the orbifold C2/Z2 ×C is to take |µ|, |ν| → ∞ with µ− ν finite, or

|µ|, |ν| → ∞ with µ+ ν finite.

3.4 The (1, 0)-forms

Since the conifold is a 3-fold, there are three independent (1, 0)-forms at each point, and

it turns out there there is a SU(2) × U(1) invariant basis for these differentials. In terms

of complex coordinates, these are
∑3

j=1 z̄jdzj , z̄4dz4 and z̄4(εijkz̄izjdzk), while in terms of

the coordinates introduced above, these may be reduced to the equivalent basis:

ω1 ≡ dµ + i(µdφ + ν σ3) ,

ω2 ≡ dν + i(ν dφ + µσ3) , ω3 ≡ µσ1 + i ν σ2 . (3.14)

It is instructive to note that the degenerate conifold also has the SU(2) invariant

(1, 0)-form:

ω0 ≡ ζ2 dζ1 − ζ1 dζ2 ∼ (σ1 + i σ2) =
1

2u v
((µ+ ν)ω3 + (µ− ν)ω3) . (3.15)

Observe that while this is a (1, 0)-form in the complex structure of the degenerate conifold,

it is not of type (1, 0) in the complex structure of the non-degenerate conifold. Thus the

limit ε→ 0 in (3.6) involves a discontinuity in the complex structure.

3.5 Hermitian metrics

The most general hermitian metric on the conifold can be written in the form

ds2 = gi ̄ ω
i ω̄̄ , (3.16)

for some metric coefficients, gi ̄, that are arbitrary functions of the coordinates. The

SU(2) × SU(2)× U(1) invariant, Ricci-flat metric on the conifold is:

ds2 =
1

3
u−

2
3

(1

3
|ω1|2 + |ω2|2 + |ω3|2 +

1

(µ2 − ν2)
|µω1 − ν ω2|2

)
(3.17)

= dρ2 +
1

3
ρ2
(
dθ2 + σ2

1 + cos2 θ σ2
2 + sin2 θ σ2

3 +
4

3
(dφ+ cos θ σ3)2

)
.

– 9 –
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where µ = ρ3/2 and ν = ρ3/2 cos θ. This is the cone over T (1,1), but parametrized in

a slightly unusual manner. Remember that we want to preserve and make manifest the

diagonal SU(2) in SU(2)L × SU(2)R. If one does this on the S2 × S2 base of the T (1,1)

space then one can write the standard metric on this product space as:

ds2
4 = (dθ2

1 + sin2 θ1 dφ
2
1) + (dθ2

2 + sin2 θ2 dφ
2
2)

= 2 (dθ2 + σ2
1 + cos2 θ σ2

2 + sin2 θ σ2
3) . (3.18)

Since d(2 cos θ σ3) yields a Kähler form on (3.18), we see that (3.17) involves the proper

Hopf fibration to make T (1,1).

Imposing the condition that the metric be SO(3) × U(1) invariant implies that the

metric can only depend explicitly upon µ and ν. It is also easy to see that the Z2 symmetry:

ϕ3 → ϕ3 + π ⇒ σ1 → −σ1 , σ2 → −σ2 (3.19)

is exactly that of (3.5). This is because w4 = −i
√
µ2 − ν2eiφ is invariant under the shift of

ϕ3, while in the conjugation by L, this shift has the effect of negating all the entries in the

second matrix of (3.8). (In section 5 we will give explicit formulae for the wj, from which

this result will be obvious.)

Requiring that the metric be invariant under this Z2 symmetry has the effect of re-

quiring that ω3 only appear paired with ω̄3 in (3.16). The metric thus has the form:

ds2 = Q1 dµ
2 +Q2 dν

2 +Q3 dµ dν +Q4 |ω3|2 +Q5 (σ3 +Q6 dφ)2 + Q7 dφ
2 , (3.20)

for some arbitrary functions, Qj(µ, ν). By introducing a new coordinate, u(µ, ν), we can

convert the (µ, φ) part of this metric to Q̂1 (du2 + u2dφ2), for some new function Q̂1. By

introducing a new coordinate, v(u, ν), we can then eliminate the du dν term. This then

leads to our final metric Ansatz:

ds2 = H2
1 (du2 + u2 dφ2) + H2

2 dv
2 + H2

3 σ
2
1 + H2

4 σ
2
2 + H2

5 v
2 (σ3 +H6 dφ)2 , (3.21)

for some arbitrary functions, Hj(u, v). The existence of the complex structure with respect

to which the metric (3.21) is hermitian imposes relations upon the Hj, but we will not

make this assumption, and instead recover it from the supersymmetry variations. Our

starting point will therefore be this metric Ansatz. However we should mention, that a

u-independent re-definition of v does not change the form of this Ansatz. We will later see

how to choose a good gauge for this.

Note that this metric Ansatz is a simple generalization of the one employed in [7].

4. The Calabi-Yau metric from the Killing spinors

The traditional way to obtain a “simple” equation the Ricci-flat metric on the a Kähler

manifold is to write down the Ricci-flat condition in terms of the Kähler potential. This

generates a Monge-Ampère equation, which, for a 3-fold is a sixth-order, non-linear PDE.

There are existence theorems for solutions of this equation [23, 24], and these will be

discussed later.
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The problem we wish to solve here has some extra global symmetry, and we will use

the supersymmetry in an approach that closely follows that of [10, 11, 7, 12]. That is, we

start with the metric Ansatz (3.21), make an algebraic prescription for the supersymmetry

bundle, and go on to derive all the essential equations from the supersymmetry variations.

The result is significantly simpler than the direct output of the Monge-Ampère equation.

4.1 Solving the Ansatz

We begin by introducing the frames:

e1 ≡ H1 du , e2 ≡ H2 dv , e3 ≡ H3 σ1 , e4 ≡ H4 σ2 ,

e5 ≡ H5 v (σ3 +H6 dφ) , e6 ≡ H1 u dφ . (4.1)

This metric has a natural almost-complex structure (indeed, it is the one inherited

from the conifold, and will ultimately become a Kähler form):

J = e1 ∧ e6 + e3 ∧ e4 + e2 ∧ e5 . (4.2)

Based upon this, we introduce the helicity projectors:

Π1 =
1

2
(1l− iΓ1Γ6) , Π2 =

1

2
(1l− iΓ3Γ4) , Π3 =

1

2
(1l− iΓ2Γ5) , (4.3)

and look for covariant constant spinors that satisfy:

Πj ε = 0 , j = 1, 2, 3 . (4.4)

There will then be a second covariant constant spinor that can be obtained by complex

conjugation and whose helicities are thus exactly the opposite of those in (4.3),(4.4).

In order to solve

∇µε = 0 , (4.5)

it is helps to fix the dependence on the coordinates as far as possible before analyzing the

equations in detail. The dependence upon angular coordinates can be obtained using the

symmetries and the Lie derivative on spinors

LK ε ≡ Kµ∇µ ε +
1

4
∇[µKν] Γµν ε . (4.6)

The covariant constant spinors must be singlets under the SU(2) action, and so the corre-

sponding LK ε must vanish. With the frames used above, this implies that ε is independent

of the ϕj . The covariant constant spinors can be charged under the U(1), and this charge

will be correlated with helicity. When one simplifies the corresponding Lie derivative, one

finds that this amounts to having:

∂φε = i q ε , (4.7)

for some constant charge, q. However, by taking the flat space limit of (4.1) one can fix

q =
1

2
,
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provided that φ is normalized to the periodic range: 0 ≤ φ < 2π. Finally, one can fix the

normalization of ε by using the fact that (4.5) implies that ε̄Γµε is constant. This means

that ε can be chosen to be independent of u and v.

Substituting all of this information into (4.5) yields a fairly involved system of equations

that is, in fact, relatively easy to disentangle. One finds the following simple conditions:

H5 = c0 H
−1
2 , (4.8)

H4 = (
1

2
c0 v

2 + c1)H−1
3 , (4.9)

u ∂uH
2
2 + c0 v ∂vH6 = 0 ,

u ∂vH
2
1 − c0 v ∂uH6 = 0 , (4.10)

where c0 and c1 are constants of integration. One also obtains some more complicated

conditions that interrelate the derivatives of H3, H1 and H2. The latter can be simplified

and integrated by making the substitution:

H2
3 = (

1

2
c0 v

2 + c1)

(
1 + e2 h

1− e2 h

)
, H2

4 = (
1

2
c0 v

2 + c1)

(
1− e2h

1 + e2h

)
, (4.11)

for some function h(u, v). In making this substitution we have used (4.9). One then finds

that the equations for H1 and H2 can be integrated to give:

H2
1 =

c0 m(u)

v (c0 v2 + 2 c1)
sinh(2h) ∂vh , H2

2 = − c0 v ∂vh , (4.12)

for some, as yet, arbitrary function m(u). Using this in the remaining supersymmetry

variations one finds that:

H6 = u ∂uh , (4.13)

and thus the last equation in (4.10) yields:

1

u
∂u(u ∂uh) − 1

v
∂v

(
m(u)

v (c0 v2 + 2 c1)
sinh(2h) ∂vh

)
= 0 . (4.14)

Finally, the supersymmetry in the φ-direction yields the condition

∂φε = i
[ 1

2
+

m′(u)

4m(u)

]
ε , (4.15)

we thus find that

m(u) = c2 u
α ⇒ q =

[ 1

2
+
α

4

]
, (4.16)

for some constants c2 and α. We thus obtain

1

uα+1
∂u(u ∂uh) − c2

v
∂v

(
1

v (c0 v2 + 2 c1)
sinh(2h) ∂vh

)
= 0 . (4.17)

This “master equation” determines the complete solution to our problem: Given a

solution to this equation, one can determine the metric functions Hj from (4.12), (4.11),

(4.8) and (4.13). One then finds that one does indeed have a covariantly constant spinor of
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the form described above, and one can explicitly verify that the metric is Ricci-flat. Indeed,

the form of the function m(u) in (4.16) follows directly from setting the Ricci tensor to

zero.

The “master equation,” while non-linear, is actually a relatively simple, quasi-linear,

second order PDE. It is certainly simpler than the Monge-Ampère equation, and more

significantly for our work, it is very similar to the classes of PDE’s found in [10, 11, 7, 12].

4.2 Conical singularities and the period of φ

If we have a Ricci-flat metric of the form (3.21) then it is still, at least locally, Ricci-flat

if one changes the period of φ to any value one desires. The potential cost of this is the

introduction of a conical singularity, but the details will depend upon the asymptotics of

H1. If H1 → 1 then the non-conical choice is 0 ≤ φ < 2π.

The fact that one can choose the period of φ has implicitly appeared in our analysis

above via the constant parameter α. Specifically, a change of variable u = wγ combined

with φ = γψ is an analytic change of variable: z ≡ ueiφ → zγ , and it conformally maps

the (u, φ)-metric via:

du2 + u2 dφ2 → w2(γ−1) (dw2 + w2 dψ2) . (4.18)

The net result is that (3.21) keeps the same form, except that the period of φ is scaled by

γ. In the foregoing analysis this change of variable merely generates a constant scale in

u∂u, but sends 1
u∂u to 1

γw(2γ−1) ∂w which means that such a re-definition can be used to set

α = 0 in (4.17). While this might be a convenient choice, one must remember that this

choice imposes a particular periodicity upon the φ-coordinate, and in practice one may

want to preserve the free parameter α.

5. The complex geometry

In order to understand the geometric significance of the solution it is instructive to re-derive

them by direct analysis of the holonomy.

5.1 The Calabi-Yau conditions

The covariantly constant spinor defines an almost complex structure that can be expressed

by choosing the hermitian vielbein

E1 ≡ H1 (du+ iu dφ) ,

E2 ≡ H2 dv + iH5 v (σ3 +H5 dφ) ,

E3 ≡ H3 σ1 + iH4 σ2 . (5.1)

This vielbein defines the Kähler form J =
∑

iE
i ∧E ı̄ and a hermitian metric.

The spin connection can now be expressed in terms of holomorphic and anti-holomor-

phic indices. In order for the spin connection to have U(3) holonomy, it has to be a one-form

with values in the Lie algebra, U(3). This is achieved by requiring the spin connection to

be of the form ωij or, equivalently, ωı̄j .
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Since ωī ≡ 0, the torsion 2-form has the following form

T i ≡ dEi + ωij ∧ Ej . (5.2)

This can be decomposed into a (2, 0)-form, a (1, 1)-form and a (0, 2)-form part. We will

step by step require the vanishing of all these torsion parts.

First, consider the (0, 2)-form part of the torsion:

(T i)(0,2) = (dEi)(0,2) . (5.3)

Requiring that this part of the torsion vanish is the same as requiring that the complex

structure be integrable. For the Ansatz (5.1) the only non-trivial components of the (0, 2)-

form part of the torsion are T 2
1̄2̄, T 3

1̄3̄ and T 3
2̄3̄. This leads to the equations

∂u

(
H2

vH5

)
+∂v

(
H6

u

)
= 0 , ∂u log

H3
H4
− 1

H3
H4

+ 1
=

2H6

u
and ∂v log

H3
H4
− 1

H3
H4

+ 1
= −2H2

vH5
. (5.4)

The first equation is an integrability condition and says, that there is a function h, such

that

H6 = u∂uh and
H2

H5
= −v∂vh . (5.5)

The other two equations then imply, that

H3

H4
= − coth(h+ c) , (5.6)

where c is an integration constant, which can be absorbed into the definition of h. However,

there is a second solution with H3 = ±H4, which corresponds to c → ±∞. For now we

will focus on the nondegenerate case. The Hermitean frame then reduces to

E1 = H1 (du+ iu dφ) ,

E2 = H2

(
dv − i

∂vh
(σ3 + u ∂uh dφ)

)
,

E3 = H3 (σ1 − i coth(h)σ2) , (5.7)

with the elementary (1, 0)-forms

ω1 ≡ du+ iu dφ ,

ω2 ≡ dv − i

∂vh
(σ3 + u ∂uh dφ) ,

ω3 ≡ sinh(h)σ1 − i cosh(h)σ2 . (5.8)

Next, the (1, 1)-form part of the torsion is:

(T i)(1,1) = (dEi)(1,1) + ωk̄
i
j E

k̄ ∧ Ej . (5.9)
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The vanishing of this part of the torison allows one to read off the non-trivial part of the

spin connection immediately:

ω1̄1̄1 = − 1

2H1
∂u log(uH1) , ω2̄1̄1 = − 1

2H1
∂v logH1 , ω1̄2̄1 = −vH5∂uH6

2uH2
1

,

ω2̄2̄1 =
1

4H1

(
∂u log

H2

H5
− vH5∂vH6

uH2

)
, ω1̄2̄2 = − 1

4H1

(
∂u log(H2H5) +

vH5∂vH6

uH2

)
,

ω2̄2̄2 = − 1

2H2
∂v log(vH5) , ω3̄2̄3 = − vH5

2H3H4
,

ω3̄3̄1 =
1

4H1

(
∂u log

H3

H4
+
H6

u

(
H3

H4
− H4

H3

))
,

ω3̄3̄2 =
1

4H2

(
∂v log

H3

H4
− H2

vH5

(
H3

H4
− H4

H3

))
,

ω1̄3̄3 = − 1

4H1

(
∂u log(H3H4) +

H6

u

(
H3

H4
+
H4

H3

))
,

ω2̄3̄3 =
1

4H2

(
−∂v log(H3H4) +

H2

vH5

(
H3

H4
+
H4

H3

))
. (5.10)

One can use the reality relation, ωkı̄j = −(ωk̄̄i)
∗, to determine the remainder of the spin

connection.

The the spin connection can now be inserted into the equation for the vanishing of

the (2, 0)-form part of the torsion. This is equivalent to the Kähler condition dJ = 0, and

reduces to four non-trivial equations:

∂v(H
2
1 ) =

v

u
H2H5∂uH6 ,

∂u(H2H5) = 0 , ∂v(H3H4) = vH2H5 and ∂u(H3H4) = 0 . (5.11)

The last three equations show that H3H4 can be an arbitrary function, f(v), and that

H2H5 is given by H2H5 = 1
v∂vf(v). Fixing f(v) fixes the freedom to re-define v by an

arbitrary function of ṽ(v). Using (5.5) and (5.6) , we get the relations

H2
3 = f(v) coth(h) and H2

2 = ∂vh ∂vf . (5.12)

The first condition (5.11) then determines H2
1 up to a function of u only.

Finally, we have the condition for SU(3) holonomy, as opposed to U(3) holonomy.

From the spin connection we can extract a U(1) connection ω̃ = ω ii. Requiring that ω̃ is

a flat connection is now equivalent to ω having SU(3) holonomy. This condition is dω̃ = 0

or ω̃ = dλ. Using (5.10), we see that

ω̃ =
iu

2
∂u log

u2H2
1H

2
2H

2
3

(∂vh)2 cosh2 h
dφ− i

2∂vh
∂v log

u2H2
1H

2
2H

2
3

(∂vh)2 cosh2 h
(σ3 + u∂uh dφ) . (5.13)

A way to make this a total derivative is by requiring, that

u2H2
1H

2
2H

2
3

(∂vh)2 cosh2 h
= c2u

α+2 . (5.14)
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Inserting this together with (5.12) into the first equation of (5.11) gives the master equation

c2
∂vf

∂v

(
1

∂v(f2)
sinh(2h) ∂vh

)
+

1

uα+1
∂u(u∂uh) = 0 , (5.15)

where c2 can be absorbed into f . Choosing f properly, one can easily recover (4.17).

The Calabi-Yau condition can also be formulated in terms of a holomorphic (3,0)-form

Ω ≡ eiφE1 ∧E2 ∧E3 , (5.16)

where the phase dependence can be fixed by requiring the proper transformation properties

under the R-symmetry. To have a Calabi-Yau manifold this form must be holomorphic,

and satisfy

Ω ∧ Ω =
1

3!
J ∧ J ∧ J . (5.17)

The latter is trivially satisfied, while the former is equivalent to requiring that Ω be closed.

This leads again to (5.15).

In general it is easy in the non-coordinate base to impose (5.17). But then it is harder

to impose that J and Ω are closed. On the other hand in a coordinate base it is easy to

impose that J and Ω are closed, but then it is hard to impose (5.17). The true art is to

impose both at the same time.

5.2 Holomorphic coordinates

Finally, it is instructive to see how the conifold is parametrized in terms of the new variables,

u and v. To determine the relationship one notes that (3.14) and (5.8) must be linear

combinations of one another. It is trivial to solve this system and thereby obtain:

µ = u cosh(h) , ν = u sinh(h) . (5.18)

One can then compute the holomorphic coordinates explicitly using (3.8) and (3.9) to

obtain:

w1 =
1

2
(iw4) [ cos2(

1

2
ϕ1) (ξ eiϕ2 + (ξ eiϕ2)−1) − sin2(

1

2
ϕ1) (ξ e−iϕ2 + (ξ e−iϕ2)−1)]

w2 =
i

2
(iw4) [ cos2(

1

2
ϕ1) (ξ eiϕ2 − (ξ eiϕ2)−1) + sin2(

1

2
ϕ1) (ξ e−iϕ2 − (ξ e−iϕ2)−1)] ,(5.19)

and

w3 =
1

2
(iw4) (ξ + ξ−1) sinϕ1 , w4 = − iu eiφ , (5.20)

where

ξ ≡ eh+iϕ3 . (5.21)

One can naturally parametrize C2 using the SU(2) matrix L and a radial coordinate,

r, and one can obtain:

ζ1 = r cos(
1

2
ϕ1) e

i
2

(ϕ2+ϕ3) , ζ2 = i r sin(
1

2
ϕ1) e−

i
2

(ϕ2−ϕ3) . (5.22)
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Taking r = eh/2, we see that (5.19) and (5.20) may be rewritten as:

w1 =
1

2
(iw4) [(ζ2

1 + ζ2
2) + e−2h (ζ̄2

1 + ζ̄2
2 )] ,

w2 =
i

2
(iw4) [(ζ2

1 − ζ2
2) − e−2h (ζ̄2

1 − ζ̄2
2 )] ,

w3 = − i
2

(iw4) (ζ1 ζ2 + e−2 h ζ̄1 ζ̄2) , w4 = − iu eiφ . (5.23)

This shows how we are writing the conifold as a deformation of the orbifold (3.7), and

that the confold and orbifold have distinct complex structures.

Alternatively, one can take:

ζ1 = r cos(
1

2
ϕ1) e−

i
2

(ϕ3+ϕ2) , ζ2 = i r sin(
1

2
ϕ1) e−

i
2

(ϕ3−ϕ2) . (5.24)

and set r = e−h/2. One then finds that (5.23) and (5.20) may be rewritten as:

w1 =
1

2
(iw4) [(ζ2

1 + ζ2
2 ) + e2h (ζ̄2

1 + ζ̄2
2 )] ,

w2 = − i
2

(iw4) [(ζ2
1 − ζ2

2 ) − e2h (ζ̄2
1 − ζ̄2

2 )] ,

w3 = − i
2

(iw4) (ζ1 ζ2 + e2h ζ̄1 ζ̄2) , w4 = − iu eiφ . (5.25)

One of the important lessons in this coordinate change exercise is that the master func-

tion, h, appears as a natural coordinate on the conifold, and one may view our approach

to finding the Ricci-flat metric as prescribing the metric functions and then solving equa-

tions to determine the complex coordinates. The simplification that the “master equation”

provides over the Monge-Ampère equation may thus be viewed as a clever re-definition of

dependent and independent variables.

5.3 The conifold again

It is relatively easy to obtain the conifold solution from our re-formulation of the problem of

finding Ricci-flat metrics: One simply sets (3.21) equal to (3.17) and extracts the necessary

re-definitions. The easiest equations follow from angular parts of the metric and one

immediately finds that:

h = log
[

tan (
θ

2
)
]
, (5.26)

along with

v2 =
2

3 c0
ρ2 cos θ , (5.27)

and c1 = 0. Given this, it is then easy to find the other change of variable:

u4 =
4

81 c2 c20
ρ6 sin4 θ , (5.28)

and show that the metrics match perfectly for any value of c0 and c2 if and only if α = 2

in (4.16). Thus the master function (5.26) satisfies:

1

u3
∂u(u ∂uh) − c2

c0 v
∂v

(
1

v3
sinh(2h) ∂vh

)
= 0 . (5.29)
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Since the dependence on c0 and c2 in (5.27)-(5.29) can be removed by rescaling u and v,

we can simply set c0 = c2 = 1.

One can also derive this result ab initio. That is, one can seek a metric that is a cone

over a five-dimensional Einstein space. that depends upon a single variable θ. Denote the

radial coordinate on the cone by ρ, then by taking ratios of metric coefficients one sees

from (3.21) that h can only be a function of θ, and so v = ρ q2(θ) for some function q2

provided c1 = 0. It thus follows that H5 and hence H2 will be independent of ρ. Then,

from the dφ2 terms we see that H1u = ρq3(θ), for some function, q3. Using this in the

expression for H2
1/H

2
2 that one obtains from (4.12) one finds:

u = ρ
6

α+2 q1(θ) , v = ρ q2(θ) . (5.30)

In particular, one finds that

x ≡ u
1
2

(α+2)

v3
, (5.31)

is independent of ρ, and is only a function of θ. One can thus take h = h(x), and substitute

into the master equation. For α = 2 and c0 = c2 = 1, this yields:

∂x(x ∂xh) =
3

8
x2 (7 ∂x(cosh(2h)) + 3x ∂2

x(cosh(2h))) . (5.32)

5.4 Monge-Ampère – Tian-Yau

The master equation (4.17) is a quasilinear PDE, but it is very hard to solve analytically.

However, Tian and Yau [23, 24] proved some existence and uniqueness theorems for non-

compact Calabi-Yau metrics. Here we will remark upon how one might employ their

methods to prove that there is a solution to the master equation with the desired properties.

One can construct a closed Kähler form, J0, with the right asymptotics on the non-

compact Calabi-Yau manifold. This Kähler form defines the Kähler class of the desired

solution. Since the manifold is Calabi-Yau, there exists a holomorphic (3, 0)-form Ω. This

3-form is not unique, since the space is noncompact, but we can fix Ω by requiring the

right asymptotics and symmetry properties.

A Ricci-flat, Kähler metric has the property

1

3!
J ∧ J ∧ J = Ω ∧ Ω . (5.33)

The two-form, J0, typically does not satisfy this equation. However one can try to find a

potential K, such that

1

3!
(J0 + ∂∂̄K) ∧ (J0 + ∂∂̄K) ∧ (J0 + ∂∂̄K) = Ω ∧Ω . (5.34)

This equation is a Monge-Ampère equation, which is much more difficult than our master

equation. However, Tian and Yau show, that there is a unique potential K with the right

fall-off properties at infinity. The proof of this theorem respects all the symmetries of the

problem, but it does not allow for a singularity at a finite point. There should however

be a simple generalization of the proof, where the asymptotics of the Kähler form at the

singularity is specified.
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We will now argue, that there is a J0 with the right asymptotics at the singularity

and at infinity. First, there is the singular conifold metric. This metric has the right

asymptotics at the singularity. On the other hand there is the degenerate limit of the

conifold, which is C2/Z2 × C. One can now use a bump function to glue the two Kähler

forms to a single Kähler form with the right asymptotics. The modification of the Tian-Yau

theorem should then prove the existence and uniqueness of a Ricci flat Kähler metric with

the desired asymptotics on the singular conifold.

5.5 Completing the solution

We have been implicitly using the results of [25, 20] that imply that the internal metric

we seek must be a Calabi-Yau geometry. The complete solution must involve non-trivial,

harmonic warp factors and related five-form fluxes as in (2.15) and (2.16). This, in principle,

requires us to solve the Laplace equation for the metric described above. Amusingly, this

equation, while linear, is not greatly different from the master equation itself. However,

without knowing the function, h, we do not appear to be able to find the requisite solution

analytically. On the other hand, we know that we need an O(3)×U(1) symmetric, smooth

harmonic function on this space with the appropriate asymptotics at the singularity and

at infinity. Again, there should be a unique such function.

All of this strongly suggests that the Klebanov-Witten flow is actually captured by our

master equation.

6. The geometry of the PW solution

There is a striking similarity between the analysis above and the analysis of more general

families of flows that involve fluxes [10, 11, 7, 12]. Moreover the master equation derived

above is very similar to the equations that govern these more general flows. Given this, we

now wish to revisit one of these solutions to elucidate the underlying geometry in the light

of what we have seen above.

The flow we consider is, of course, the close cousin of the Klebanov-Witten flow in which

the mass perturbation is of the form (2.2) but with both terms having the same sign. This

flow lies purely within the untwisted sector of the gauge theory, and its holographic dual

involves non-trivial three-form fluxes. The SU(2)×U(1) invariant families of flow solutions

of this type were analyzed in [7].

6.1 The elements of the PW solution

We begin by recalling some of the details of the solution of [7], but we use slightly modified

conventions. We start by recasting the metric Ansatz in the form:

ds2 = H2
0 (ηµν dx

µ dxν) − H−2
0 ds2

6 , (6.1)

where ds2
6 is given by (3.21) with H3 = H4 = 1

2v. Note the inclusion of the factor of H−2
0

in front of ds2
6. We thus use the frames:

ea = H0 dx
a , a = 1, . . . , 4 , e5 = H−1

0 H1 du , e6 = H−1
0 H2 dv ,
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e7 =
1

2
H−1

0 v σ1 , e8 =
1

2
H−1

0 v σ2 ,

e9 =
1

2
H−1

0 H5 v (σ3 +H6 dφ) , e10 = H−1
0 H1 u dφ , (6.2)

Following [7], we define:

Ψ = log

(
v2 H1

H2

)
. (6.3)

Then the metric coefficients of ds2
6 are determined by:

H2
1 =

1

2 v3
e2 Ψ ∂vΨ , H2

2 =
1

2
v ∂vΨ , H5 = H−1

2 , H6 = u ∂uΨ , .

(6.4)

6.2 The complex geometry of the PW solution

Observe that, with the exception of the expression for H1, the PW solution is identical to

the form of the metric discovered in sections 4 and 5. Indeed, if one takes:

h = Ψ + k , (6.5)

and takes the limit k → ∞ while scaling c2 appropriately, then the metric of section 4

matches the form of the metric above.

Thus, the metric in [7] is hermitian with an integrable complex structure, with (1,0)-

forms

ω1 = du− iu dφ , ω2 = σ1 + i σ2 , ω3 = dΨ + i σ3 . (6.6)

The corresponding holomorphic coordinates are:

z1 = u e−i φ , z2 = e
1
2

Ψ cos(
1

2
ϕ1) e

i
2

(ϕ2+ϕ3) , z3 = e
1
2

Ψ sin(
1

2
ϕ1) e−

i
2

(ϕ2−ϕ3) . (6.7)

The putative almost complex structure:

J = −H2
1 u du ∧ dφ +

1

4
v2 σ1 ∧ σ2 +

1

2
v dv ∧ (σ3 + u ∂uΨ) (6.8)

is thus a true complex structure, and the underlying complex manifold is simply C2/Z2×C
parametrized by (6.7).

Moreover, the (3, 0)-form:

Ω = eΨ−i φ ω1 ∧ ω2 ∧ ω3 = − 1

4
dz1 ∧ dz2 ∧ dz3 , (6.9)

is manifestly closed, and thus holomorphic. It also satisfies the Calabi-Yau condition:

Ω ∧ Ω =
64

3
i J ∧ J ∧ J , (6.10)

and thus there is a holomorphic (3, 0) form that is a square root of the volume form. We

thus have a Calabi-Yau manifold, except that the manifold is not Kähler. The complex

structure (or, more correctly, the Kähler form) is not closed.
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The solution of [7] requires that Ψ satisfy:

u3 ∂

∂u

(
1

u3

∂

∂u
Ψ

)
+

1

v

∂

∂v

(
1

v3
e2Ψ ∂Ψ

∂v

)
= 0 , (6.11)

whereas the Kähler condition, or Ricci-flatness of the metric, would require

1

u

∂

∂u

(
u
∂

∂u
Ψ

)
+

1

v

∂

∂v

(
1

v3
e2Ψ ∂Ψ

∂v

)
= 0 . (6.12)

Thus the solution of [7] is based upon a the complex manifold C3, endowed with

hermitian, non-Kähler metric. The mysterious master equation of [7] thus turns out to be

simple deformation of the Kähler condition.

It is also worth noting that if one sets h = ±(Ψ+k), where k is a constant, in (4.17) and

takes the limit k →∞ with c2 → 0 then (4.17) (for α = 2 and c1 = 0) degenerates to (6.12).

This substitution of h = ±(Ψ +k) and limit of k is precisely the limit that degenerates the

conifold to the orbifold, and so it is to be expected that the “master equation” degenerate

to the Ricci-flat condition for C2/Z2 × C, and hence equation (6.12).

7. Conclusions

Our purpose has been to elucidate the geometry that underlies the holographic duals of

N = 1 supersymmetric flows from N = 2 quiver gauge theories. We are particularly

interested in flows generated by mass terms for the chiral matter multiplets in the N =

2 vector multiplets. The twisted sector masses are dual to blow-up modes in the dual

geometry while the ‘total’ mass parameter comes from the untwisted sector and is dual to

a three-from flux. Here, for simplicity, we have focussed on the Â1 quiver theory, but we

believe that our results apply in general. Moreover, we studied the two extreme cases: a

flow purely in the twisted sector (the Klebanov-Witten flow) and the PW flow.

We have argued that flows purely in the twisted sector must have an underlying Calabi-

Yau geometry all along the flow, and that the complete solution is simply an extension via

the harmonic Ansatz. For the Â1 quiver we showed that this means that the underlying

manifold must be the singular conifold with a Calabi-Yau metric that interpolates between

the orbifold point at infinity and the cone over T (1,1) in the deep interior. The standard

approach to finding such a metric would involve the solving the Monge-Ampère equation, a

sixth order, non-linear PDE. However, by using the symmetries and structure of the flow we

were able to make an Ansatz of sufficient generality to capture the solution and yet reduce

everything to the solution of a single, second order quasi-linear PDE. This substantial

simplification compared to the Monge-Ampère approach arises partially because we have

a higher level of symmetry, and do not need the full force of the general method. The

other reason for the simplification is because of an inversion of dependent and independent

variables: Monge-Ampère approach leads to differential equations for metric functions in

terms of fixed complex coordinates, while the “master equation” is really a differential

equation for part of the complex coordinates having fixed some of the metric functions. At

any rate, the “master equation” is, on the face of it, far simpler than the Monge-Ampère
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equation, and the master equation has a very simple linearization that leads to an obvious

perturbation expansion.

One of the other consequences of this description of a Calabi-Yau manifold by the

master equation (6.12) is that it sheds some light upon other non-Calabi-Yau, flux solutions,

like those of [10, 11, 7, 12], that are completely determined by a very, very similar such

equation. This strongly suggest that such solutions must be relatively simple modifications

of the Calabi-Yau condition. To understand this better, we re-examined the geometry

underlying the solution of [7], and showed that this solution is essentially a a non-Kähler

Calabi-Yau manifold: It has an integrable complex structure, a hermitian metric, and a

holomorphic (3, 0) form that is the square root of the volume form. We are continuing the

study of this geometry and its generalizations, and we would particularly like to understand

the geometric meaning of the simple deformations of the master equations that take one

from the Calabi-Yau solutions to the non-trivial flux solutions.

It is also useful to recall that the master equation, (6.11) possesses a known, highly non-

trivial solution coming from gauged supergravity [4]. That is, there is a steepest descent

flow on a simple five-dimensional superpotential that provides one of the most interesting

flows to the non-trivial IR fixed point, and while this solution is not given analytically, its

solution is trivially obtained graphically. If one could forge the connection between the

various master equations more deeply, one might hope to find special Calabi-Yau solutions

by such simple, graphical techniques.

There is also the work of [8], [9] concerning the continuous family of flows involving

arbitrary mixtures of mass terms in the twisted and untwisted sectors. Moreover, it was

argued in [8] that all these flows should have a continuous family if IR fixed points. We

are presently generalizing the results presented here so as to try to capture this broader

family of flows.

We hope, ultimately, to be able to give a complete geometric characterization of su-

persymmetric backgrounds involving fluxes. It is evident from the results presented here

and elsewhere that trying to characterize the supersymmetry bundle directly is a very ef-

fective approach in studying not only these problems, but also in re-visiting Calabi-Yau

geometries.
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